Works Cited
Bal 2017 Bal, M. Narratology:
Introduction to the Theory of Narrative. University of Toronto
Press, London (2017).
Bradley and Lang 1999 Bradley, M. M. and
Lang, P. J. “Affective Norms for English Words (ANEW):
Instruction Manual and Affective Ratings”. Technical Report C-1, University of Florida, NIMH Center for
Research in Psychophysiology, Gainesville (1999).
Bremond 1973 Bremond, C. Logique Du Récit. Seuil, Paris (1973).
Bringsjord and Ferrucci 2000 Bringsjord, S. and Ferrucci, D. A. 2000. Artificial
Intelligence and Literary Creativity: Inside the Mind of BRUTUS, a
Storytelling Machine. L. Erlbaum Associates, Mahwah, N.J
(2000).
Buduma and Locascio 2017 Buduma, N. and
Locascio, N. Fundamentals of Deep Learning: Designing
next-Generation Machine Intelligence Algorithms. O’Reilly Media.
Sebastopol, CA (2017).
Buurma and Gold 2018 Buurma, R. S. and Gold,
M. K. “Contemporary Proposals about Reading in the Digital
Age”. In D. H. Richter (ed), Companion to
Literary Theor. Wiley, Hoboken (2018), pp. 131-150.
Cavender et al. 2016 Cavender, K., Graham, J.
E., Fox, R. P. Jr., Flynn, R., and Cavender, K. “Body
Language: Toward an Affective Formalism of Ulysses”. In Ross, S. and
O’Sullivan, J. C. (eds), Reading Modernism with Machines:
Digital Humanities and Modernist Literature. Palgrave Macmillan,
London (2016), pp. 223-242.
Ciotti 2017a Ciotti, F. “Modelli e Metodi Computazionali per La Critica Letteraria: Lo Stato
Dell'arte”. In Alfonzetti, B., Cancro, T., Di Iasio, V., and
Pietrobon, E. (eds), L’Italianistica Oggi. Adi
Editore, Roma (2017), pp. 1-11.
Ciotti 2017b Ciotti, F. “What’s in a Topic Model? Critica Teorica Di Un Metodo Computazionale per
l’analisi Del Testo”, Testo e Senso, 18
(2017): 1-11.
Clough and Halley 2007 Clough, P. T. and
Halley, J. O’M. (eds) The Affective Turn: Theorizing the
Social. Duke University Press, Durham (2007).
Cordón-García et al. 2013 Cordón-García,
J.-A., Alonso-Arévalo, J., Gómez-Díaz, R., and Linder, D. Social Reading. Chandos, Oxford (2013).
Crossley 2017 Crossley, S. A., Kyle, K., and
McNamara, D. S. “Sentiment Analysis and Social Cognition
Engine (I): An Automatic Tool for Sentiment, Social Cognition, and
Social-Order Analysis”, Behavior Research
Methods, 49.3 (2017): 803-21.
Da 2019 Da, N. Z. “The
Computational Case against Computational Literary Studies”,
Critical Inquiry, 45.3 (2019): 601-639.
https://doi.org/10.1086/702594 Devlin et al. 2019 Devlin, J., Chang, M.-W., Lee,
K. and Toutanova, K. “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding”.
ArXiv:1810.04805 (2019).
http://arxiv.org/abs/1810.04805 Di Gangi et al. 2019 Di Gangi, M. A., Lo Bosco,
G., and Pilato, G. “Effectiveness of Data-Driven Induction
of Semantic Spaces and Traditional Classifiers for Sarcasm
Detection”,
Natural Language Engineering,
25.2 (2019): 257–85.
https://doi.org/10.1017/S1351324919000019 Eder 2013 Eder, M. “Does Size
Matter? Authorship Attribution, Small Samples, Big Problem”,
Digital Scholarship in the Humanities, 30.2 (2013):
167-182.
https://doi.org/10.1093/llc/fqt066 Eder 2017 Eder, M. “Visualization in Stylometry: Cluster Analysis Using Networks”,
Digital Scholarship in the Humanities, 32.1
(2017): 50-64.
https://doi.org/10.1093/llc/fqv061 Elkins 2022 Elkins, K. The
Shapes of Stories: Sentiment Analysis for Narrative. Cambridge
University Press (2022).
Evert et al. 2017 Evert, S., Proisl, T., Jannidis,
F., Reger, I., Pielström, S., Schöch, C., and Vitt, T. “Understanding and Explaining Delta Measures for Authorship
Attribution”,
Digital Scholarship in the
Humanities, 32.suppl_2 (2017): ii4–ii16.
https://doi.org/10.1093/llc/fqx023 Flanders and Jannidis 2019 Flanders, J.
and Jannidis, F. (eds) The Shape of Data in the Digital
Humanities: Modeling Texts and Text-Based Resources. Routledge,
Taylor and Francis Group, London; New York (2019).
Fludernik 1996 Fludernik, M. Towards a “natural” Narratology. Routledge,
London; New York (1996).
Freytag 1863 Freytag, G. Die
Technik des Dramas. Hirzel, Leipzig (1863).
Frye 1982 Frye, N. The great
code: the Bible and literature. Routledge, London (1982).
Genette 1972 Genette, G. Figures III. Éditions du Seuil, Paris (1972).
Gius et al. 2019 Gius, E., Jannidis, F., Krug, M.,
Zehe, A., Hotho, A., Puppe, F., Krebs, J., Reiter, N., Wiedmer, N., and Konle,
L. “Detection of Scenes in Fiction”. In
DH2019 Book of Abstracts. ADHO, Utrecht (2019).
https://dev.clariah.nl/files/dh2019/boa/0608.html. Grisot et al. 2022 Grisot, G., Rebora, S., and
Herrmann, J. B. “Sentiment lexicons or BERT? A comparison of
sentiment analysis approaches and their performance”. DH 2022 Conference Abstracts. ADHO, Tokyo (2022), pp.
469-470
Hammond 2017 Hammond, A. “The
Double Bind of Validation: Distant Reading and the Digital Humanities'
‘Trough of Disillusionment’”, Literature Compass, 14.8 (2017): e12402.
Herrmann et al. 2015 Herrmann, J. B., Schöch,
C., and van Dalen-Oskam, K. “Revisiting Style, a Key Concept
in Literary Studies”, Journal of Literary
Theory, 9.1 (2015): 25-52.
Hogan 2011 Hogan, P. C. Affective Narratology: The Emotional Structure of Stories. Bison,
Lincoln (2011).
Hu et al. 2021 Hu, Q., Liu, B., Thomsen, M. R., Gao,
J., Nielbo, K. L. “Dynamic evolution of sentiments in Never
Let Me Go: Insights from multifractal theory and its implications for
literary analysis”.
Digital Scholarship in the
Humanities, 36.2 (2021): 322-332.
https://doi.org/10.1093/llc/fqz092 Iser 1978 Iser, W. The Act of
Reading: A Theory of Aesthetic Response. Johns Hopkins University
Press, Baltimore (1978).
Jacobs 2019 Jacobs, A. M. “Sentiment Analysis for Words and Fiction Characters From the Perspective of
Computational (Neuro-)Poetics”,
Frontiers in
Robotics and AI, 6 (2019).
https://doi.org/10.3389/frobt.2019.00053 Jacobs et al. 2017 Jacobs, A. M., Schuster, S.,
Xue, S., and Lüdtke, J. “‘What’s in the Brain That Ink May
Character…’ A quantitative narrative analysis of Shakespeare’s 154
sonnets for use in (Neuro-)cognitive poetics”, Scientific Study of Literature, 7.1 (2017): 4-51.
Jacobs et al. 2020 Jacobs, A. M., Herrmann, J. B.,
Lauer, G., Lüdtke, J. and Schroeder, S. “Sentiment Analysis
of Children and Youth Literature: Is There a Pollyanna Effect?”
Frontiers in Psychology 11 (2020): 574746.
https://doi.org/10.3389/fpsyg.2020.574746 Jannidis and Flanders 2019 Jannidis,
F., and Flanders, J. “A Gentle Introduction to Data
Modeling”. In Jannidis, F., and Flanders, J. (eds), The Shape of Data in the Digital Humanities: Modeling Texts
and Text-Based Resources. Routledge, Taylor and Francis Group,
London; New York (2019), pp. 26-95.
Joulin et al. 2017 Joulin, A., Grave, E.,
Bojanowski, P., and Mikolov, T. “Bag of Tricks for Efficient
Text Classification”. In Proceedings of the 15th
Conference of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers. Association for Computational
Linguistics (2017), pp. 427-431.
Kestemont 2014 Kestemont, M. “Function Words in Authorship Attribution. From Black Magic to
Theory?” In
Proceedings of the 3rd Workshop on
Computational Linguistics for Literature (CLFL). Association for
Computational Linguistics, Gothenburg, Sweden (2014), pp. 59-66.
http://aclweb.org/anthology/W/W14/W14-0908.pdf. Kim and Klinger 2018a Kim, E. and Klinger,
R. “Who Feels What and Why? Annotation of a Literature
Corpus with Semantic Roles of Emotions”. In
Proceedings of the 27th International Conference on Computational
Linguistics. Association for Computational Linguistics, Santa Fe, New
Mexico, USA (2018), pp. 1345-1359.
http://aclweb.org/anthology/C18-1114. Kim and Klinger 2018b Kim, E. and Klinger,
R. “A Survey on Sentiment and Emotion Analysis for
Computational Literary Studies”. ArXiv:1808.03137 (2018).
http://arxiv.org/abs/1808.03137v1. Kim et al. 2017 Kim, E., Padó, S., and Klinger, R.
“Investigating the Relationship between Literary Genres
and Emotional Plot Development”. In
Proceedings
of the Joint SIGHUM Workshop on Computational Linguistics for Cultural
Heritage, Social Sciences, Humanities and Literature. Association for
Computational Linguistics, Vancouver, Canada (2017), pp. 17-26.
https://doi.org/10.18653/v1/W17-2203 Konle et al. 2022 Konle, L., Kröncke, M., Jannidis,
F. and Winko, S. “Emotions and Literary Periods”.
DH 2022 Conference Abstracts. ADHO, Tokyo
(2022), pp. 278-281
Lendvai et al. 2020 Lendvai, P., Darányi, S.,
Geng, C., Kuijpers, M., Lopez de Lacalle, O., Mensonides, J.-C., Rebora, S. and
Reichel, U. (2020). “Detection of Reading Absorption in
User-Generated Book Reviews: Resources Creation and Evaluation”. In
Proceedings of The 12th Language Resources and
Evaluation Conference. European Language Resources Association,
Marseille (2020), pp. 4835–4841.
https://www.aclweb.org/anthology/2020.lrec-1.595 Liu 2015 Liu, B. Sentiment
Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge
University Press, New York (2015).
McCarty 2005 McCarty, W. Humanities Computing. Palgrave Macmillan, New York (2005).
Mikolov et al. 2013 Mikolov, T., Sutskever, I.,
Chen, K., Corrado, G., and Dean, J. “Distributed
Representations of Words and Phrases and Their Compositionality”.
ArXiv:1310.4546 (2013).
http://arxiv.org/abs/1310.4546. Oatley 2012 Oatley, K. The
Passionate Muse: Exploring Emotion in Stories. Oxford University
Press, New York (2012).
Papp-Zipernovszky et al. 2021 Papp-Zipernovszky, O., Mangen, A., Jacobs, A. M. and Lüdtke, J. “Shakespeare Sonnet Reading: An Empirical Study of Emotional
Responses”.
Language and Literature:
International Journal of Stylistics (2021): 096394702110546.
https://doi.org/10.1177/09639470211054647 Patwa et al. 2020 Patwa, P., Aguilar, G., Kar, S.,
Pandey, S., PYKL, S., Gambäck, B., Chakraborty, T., Solorio, T. and Das, A.
“SemEval-2020 Task 9: Overview of Sentiment Analysis of
Code-Mixed Tweets”. In
Proceedings of the
Fourteenth Workshop on Semantic Evaluation. International Committee
for Computational Linguistics, Barcelona (2020), pp. 774–790.
https://doi.org/10.18653/v1/2020.semeval-1.100 Peer et al. 2012 Peer, W. v., Hakemulder, J., and
Zyngier, S. Scientific Methods for the Humanities.
John Benjamins, Amsterdam; Philadelphia (2012).
Pianzola et al. 2020 Pianzola, F., Rebora, S.,
and Lauer, G. “Wattpad as a Resource for Literary Studies in
the 21st Century. Quantitative and Qualitative Examples of the Importance of
Digital Social Reading and Readers’ Comments in the Margins”,
PLoS ONE, 15.1 (2020): e0226708.
https://doi.org/10.1371/journal.pone.0226708 Pipalia et al. 2020 Pipalia, K., Bhadja, R. and
Shukla, M. “Comparative Analysis of Different Transformer
Based Architectures Used in Sentiment Analysis”. In
Proceedings of the 9th International Conference System
Modeling and Advancement in Research Trends (SMART). IEEE, Moradabad
(2020), pp. 411–415.
https://doi.org/10.1109/SMART50582.2020.9337081 Piper 2018 Piper, A. Enumerations: Data and Literary Study. The University of Chicago
Press, Chicago; London (2018).
Pirlet and Wirag 2017 Pirlet, C. and Wirag,
A. “Towards a ‘Natural’ Bond of Cognitive and Affective
Narratology”. In Burke, M. and Troscianko, E. T. (eds),
Cognitive Literary Science. Oxford University Press,
Oxford (2017), pp. 35–54.
https://doi.org/10.1093/acprof:oso/9780190496869.003.0003 Plutchik 1991 Plutchik, R. The Emotions. University Press of America, Lanham, Md
(1991).
Prince 1973 Prince, G. J. A
Grammar of Stories: An Introduction. Mouton, The Hague; Paris
(1973).
Reagan et al. 2016 Reagan, A. J., Mitchell, L.,
Kiley, D., Danforth, C. M., and Dodds, P. S. “The Emotional
Arcs of Stories Are Dominated by Six Basic Shapes”, EPJ Data Science, 5.1 (2016): 31.
Rebora 2020 Rebora, S. “Shared
Emotions in Reading Pirandello. An Experiment with Sentiment
Analysis”. In Marras, C., Passarotti, M., Franzini, G., and Litta, E.
(eds),
Atti del IX Convegno Annuale AIUCD. La svolta
inevitabile: sfide e prospettive’per l'Informatica Umanistica.
Università Cattolica del Sacro Cuore, Milano (2020), pp. 216-221.
http://doi.org/10.6092/unibo/amsacta/6316 Reddy 2010 Reddy, W. M. The
Navigation of Feeling: A Framework for the History of Emotions.
Cambridge Univ. Press, Cambridge (2010).
Rikhardsdottir 2017 Rikhardsdottir, S.
Emotion in Old Norse Literature: Translations, Voices,
Contexts. D. S. Brewer, Cambridge (2017).
Rojas-Barahona 2016 Rojas-Barahona, L. M.
“Deep Learning for Sentiment Analysis”,
Language and Linguistics Compass, 10.12 (2016):
701-719.
https://doi.org/10.1111/lnc3.12228 Rosenwein 2008 Rosenwein, B. H. “Emotion Words.” In Nagy, P. and Bouquet, D. (eds),
Le Sujet Des Émotions Au Moyen Âge. Beauchesne,
Paris (2008), pp. 93-106.
Russell 1980 Russell, J. A. “A Circumplex Model of Affect”,
Journal of
Personality and Social Psychology, 39.6 (1980): 1161-1178.
https://doi.org/10.1037/h0077714 Salgaro 2011 Salgaro, M. “La
lettura come ‘Lezione della base cranica’ (Durs Grünbein). Prospettive per
l’estetica della ricezione”, Bollettino
Dell’associazione Italiana Di Germanistica, 4 (2011): 49-62.
Seyeditabari et al. 2018 Seyeditabari, A.,
Tabari, N., and Zadrozny, W. “Emotion Detection in Text: A
Review”. ArXiv:1806.00674 (2018).
http://arxiv.org/abs/1806.00674. Socher et al. 2013 Socher, R., Perelygin, A., Wu,
J. Y., Chuang, J., Manning, C. D., Ng, A. Y., and Potts, C. “Recursive Deep Models for Semantic Compositionality Over a Sentiment
Treebank”. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, Seattle (2013), pp. 1631-1642.
Sprugnoli et al. 2016 Sprugnoli, R., Tonelli,
S., Marchetti, A., and Moretti, G. “Towards Sentiment
Analysis for Historical Texts”,
Digital
Scholarship in the Humanities, 31.4 (2016): 762–772.
https://doi.org/10.1093/llc/fqv027 Sprugnoli et al. 2020 Sprugnoli, R.,
Passarotti, M., Corbetta, D. and Peverelli, A. “Odi et Amo.
Creating, Evaluating and Extending Sentiment Lexicons for Latin”. In
Proceedings of the 12th Language Resources and
Evaluation Conference. ACM, New York, (2020), pp. 3078–3086.
https://aclanthology.org/2020.lrec-1.376 Stone and Hunt 1963 Stone, P. J. and Hunt, E.
B. “A Computer Approach to Content Analysis: Studies Using
the General Inquirer System”. In
Proceedings of
the May 21-23, 1963, Spring Joint Computer Conference. ACM, New York
(1963), pp. 241-256.
https://doi.org/10.1145/1461551.1461583 Straka 2018 Straka, M. “UDPipe
2.0 Prototype at CoNLL 2018 UD Shared Task”. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. Association for Computational
Linguistics, Brussels (2018), pp. 197-207.
Taboada et al. 2011 Taboada, M., Brooke, J.,
Tofiloski, M., Voll, K., and Stede, M. “Lexicon-Based
Methods for Sentiment Analysis”,
Computational
Linguistics 37.2 (2011): 267-307.
https://doi.org/10.1162/COLI_a_00049 Tausczik and Pennebaker 2010 Tausczik, Y. R. and Pennebaker, J. W. “The Psychological
Meaning of Words: LIWC and Computerized Text Analysis Methods”,
Journal of Language and Social Psychology, 29.1
(2010): 24-54.
https://doi.org/10.1177/0261927X09351676 Thomson 2017 Thomson, D. E. Prelude as Lifespan Gauge, Scientific Study of
Literature, 7.2 (2017): 232-256.
Tracy and Randles 2011 Tracy, J. L. and
Randles, D. “Four Models of Basic Emotions: A Review of
Ekman and Cordaro, Izard, Levenson, and Panksepp and Watt”,
Emotion Review, 3.4 (2011): 397-405.
https://doi.org/10.1177/1754073911410747 Underwood 2019a Underwood, T. “Algorithmic Modeling. Or, Modeling Data We Do Not Yet
Understand”. In Flanders, J. and Jannidis, F. (eds), The Shape of Data in the Digital Humanities: Modeling Texts
and Text-Based Resources. Routledge, Taylor and Francis Group,
London; New York (2019), pp. 250-263.
Underwood 2019b Underwood, T. Distant Horizons: Digital Evidence and Literary
Change. The University of Chicago Press, Chicago (2019).
Van Hee et al. 2018 Van Hee, C., Lefever, E., and
Hoste, V. “Exploring the Fine-Grained Analysis and Automatic
Detection of Irony on Twitter”,
Language
Resources and Evaluation, 52.3 (2018): 707-731.
https://doi.org/10.1007/s10579-018-9414-2 Vani and Antonucci 2019 Vani, K. and
Antonucci, A. “NOVEL2GRAPH: Visual Summaries of Narrative
Text Enhanced by Machine Learning”. In Text2Story@ ECIR (2019), pp. 29-37.
Yadav and Vishwakarma 2020 Yadav, A.
and Vishwakarma, D. K. “Sentiment analysis using deep
learning architectures: A review”.
Artificial
Intelligence Review, 53.6 (2020): 4335–4385.
https://doi.org/10.1007/s10462-019-09794-5 Zehe et al. 2016 Zehe, A., Becker, M., Hettinger,
L., Hotho, A., Reger, I., and Jannidis, F. “Prediction of
Happy Endings in German Novels Based on Sentiment Information”. In
Proceedings of the Workshop on Interactions between
Data Mining and Natural Language Processing (2016), pp. 9-16.
Zehe et al. 2017 Zehe, A., Becker, M., Jannidis, F.,
and Hotho, A. “Towards Sentiment Analysis on German
Literature”. In Kern-Isberner, G., Fürnkranz, J., and Thimm M. (eds),
KI 2017: Advances in Artificial Intelligence.
Springer International Publishing, Cham (2017), pp. 387-394.
https://doi.org/10.1007/978-3-319-67190-1_36